This webinar, organized as part of the EXA4MIND project, focuses on the fundamentals and practical use of vector databases for similarity search tasks in AI workflows.
The session begins with an introduction to core concepts such as vector embeddings and how they enable semantic understanding of data. Different types of vector search—including image vector search, text vector search, and hybrid approaches—are discussed conceptually to provide foundational understanding.
In the hands-on part of the webinar, Milvus is used to create a vector database collection and load both image and text embeddings. Participants are guided through code demonstrations showing how to perform various search operations and analyze the results in real-time.
This practical walkthrough aims to illustrate how vector search capabilities can be integrated into AI-driven systems to support advanced analytics and retrieval tasks at scale.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in re
prehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim
ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in re
prehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.